Performance Analysis on Carrier Phase-Based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments
نویسندگان
چکیده
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.
منابع مشابه
INS-Assisted High Sensitivity GPS Receivers for Degraded Signal Navigation
This paper proposes a novel architecture for ultra-tight integration of a High Sensitivity Global Positioning System (HSGPS) receiver with an Inertial Navigation System (INS), to address the issue of GPS tracking and positioning in degraded signal environments. By enhancing signal tracking loops in receivers through the use of optimal controllers/estimators and aiding from external source such ...
متن کاملPerformance Analysis and Architecture Design of Vector-Based Ultra- Tightly Coupled GPS/INS Integration on satellite Faults
GPS vector receive make the tasks of signal tracking and navigation state estimation are integrated into an algorithm which can complement traditional scalar receiver tracking independent and parallel tracking disadvantage. Through integration with INS, the GPS signal in jamming or weak environment based on vector tracking ultra-tightly coupled GNSS/INS integration system has significant advant...
متن کاملTightly Coupled Integration of Ionosphere-Constrained Precise Point Positioning and Inertial Navigation Systems
The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together fo...
متن کاملTightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation S...
متن کاملA Novel Architecture for Ultra-Tight HSGPS-INS Integration
Global Positioning System (GPS) currently fulfills the positioning requirements of many applications under Line-Of-Sight (LOS) environments. However, many Location-Based Services (LBS) and navigation applications such as vehicular navigation and personal location require positioning capabilities in environments where LOS is not readily available, e.g., urban areas, indoors and dense forests. Su...
متن کامل